
Helmholtz bright and boundary solitons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 1545

(http://iopscience.iop.org/1751-8121/40/7/008)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/7
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 1545–1560 doi:10.1088/1751-8113/40/7/008

Helmholtz bright and boundary solitons

J M Christian1,3, G S McDonald1 and P Chamorro-Posada2

1 Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for
Materials Research, University of Salford, Salford M5 4WT, UK
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Abstract
We report, for the first time, exact analytical boundary solitons of a generalized
cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have
a linked-plateau topology that is distinct from conventional dark soliton
solutions; their amplitude and intensity distributions are spatially delocalized
and connect regions of finite and zero wave-field disturbances (suggesting
also the classification as ‘edge solitons’). Extensive numerical simulations
compare the stability properties of recently derived Helmholtz bright solitons,
for this type of polynomial nonlinearity, to those of the new boundary solitons.
The latter are found to possess a remarkable stability characteristic, exhibiting
robustness against perturbations that would otherwise lead to the destabilizing
of their bright-soliton counterparts.

PACS numbers: 42.65.−k, 42.65.Tg, 05.45.Yv

1. Introduction

Solitons are ubiquitous entities in nature. Whenever linear effects (such as dispersion,
diffraction or diffusion) are balanced exactly by nonlinearity (self-phase modulation,
self-focusing or reaction-kinetic properties, respectively), robust self-trapped structures—
solitons—can emerge as dominant modes of the system dynamics. These localized self-
stabilizing nonlinear waves arise widely in nature since quite different physical systems are
governed by a relatively small set of universal equations, at least to a first approximation.
Solitons are often sech (‘bell’)- or tanh (‘S’)-shaped structures. The latter class are sometimes
referred to as kink solitons, and they generally possess topologically non-trivial phase
distributions.

Phase-topological kink solitons appear in a range of physically diverse systems and play
the role of ‘fronts’ and ‘domain walls’. In classical mechanics, for example, they describe
collective long-wave excitations on a line of weakly coupled pendula. In condensed matter,
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kink solitons arise in simple models of one-dimensional lattice dynamics when studying the
motion of dislocations and domain walls in ferromagnetic crystals, and they also play a key role
in the phenomenological understanding of phase transitions. In chemical kinetics, kink solitons
appear as solutions to reaction–diffusion equations. They also occur in hydrodynamics, plasma
physics, quantum field theory and cosmology. Comprehensive reviews of these systems can
be found in [1–4].

Our principle concern in this paper is with spatial soliton beams found in nonlinear
optics [5, 6]. These types of soliton can arise when the tendency of a collimated light
beam to diffract is opposed by the nonlinear properties of the optical medium. When these
two effects (diffractive broadening and narrowing due to self-focusing) become comparable,
then a stationary beam can exist whose transverse intensity distribution is invariant along
the propagation direction. Spatial solitons are of theoretical interest as particular solutions
to generic nonlinear evolution equations, but they are also the subject of considerable
experimental investigation. The robustness of these solitons against perturbations suggests
their use as elementary units in future photonic systems, where they could play a central
role in applications such as all-optical switching, beam steering, optical interconnects and
image/information processing.

2. Paraxial versus non-paraxial solitons

In nonlinear optics, one is often interested in planar waveguide geometry, where there is a
reference longitudinal (z) and a single effective transverse (x) dimension. A simple model
of beam propagation is provided by the universal nonlinear Schrödinger (NLS) equation,
which allows for the paraxial evolution of one-dimensional (transverse) diffraction and a
Kerr nonlinearity (where the refractive index varies linearly with the local beam intensity).
The NLS equation is exactly integrable and its bright [7] and dark [8] soliton solutions
are well known. The latter are tanh-type kink structures that possess non-trivial phase
topology. Other, more general, NLS-type models have also been studied. These tend to
account for more involved material properties and allow for broader classes of refractive-
index dependences while retaining the possibility of exact analytical soliton solutions. The
most familiar generalizations are classic cubic-quintic [9–13] and the power-law [14, 15]
models. More complicated refractive-index distributions involve polynomial- [16–18] and
saturable-type [19, 20] nonlinearities.

NLS-type equations provide an adequate description if the optical beams are: (i) much
broader than their carrier wavelength, (ii) of sufficiently low intensity and (iii) propagating
along (or at near-negligible angles with respect to) the reference axis. These criteria define
the paraxial approximation. If all three conditions are not satisfied simultaneously, the beam
is referred to as ‘non-paraxial’. Non-paraxial beams have received much attention in the
literature over the last three decades. Since the seminal work of Lax et al [21], a large body of
research has considered contexts involving ultra-narrow beams, where condition (i) no longer
holds [22–26]. As a consequence, the terms ‘narrow beam’ and ‘non-paraxial beam’ have, to
a large extent, become interchangeable. However, this oversimplified interpretation omits the
possibility of other distinct physical regimes of non-paraxiality, such as the propagation and
multiplexing of broad beams at arbitrary angles with respect to the reference direction. This
angular context, in which only condition (iii) is relaxed, defines Helmholtz non-paraxiality
[27].

In other works, we demonstrated that oblique (off-axis) soliton evolution [27, 28] and
soliton–soliton interactions [29] can be described by nonlinear Helmholtz (NLH) equations.
Since beams are always assumed to be broad, narrow-beam corrections [21–26] to the
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governing equation are not necessary. In NLH descriptions, the electric field may be
regarded as effectively scalar (with a single transverse component orientated in the plane
of the waveguide), and the refractive-index distributions may also be treated within the scalar
approximation [23]. Models based upon the NLH formalism omit the slowly varying envelope
approximation (SVEA), and thus respect the rotational symmetry inherent to uniform media
(x and z appear symmetrically in the governing equation). Diffraction is therefore allowed in
both spatial dimensions. x–z equivalence also permits travelling- and standing-wave solutions
and allows the description of beams that propagate and interact at any angle relative to the
reference direction.

Exact analytical Helmholtz soliton solutions are known for focusing [27] and defocusing
[30] Kerr media, and also for power-law [31] media. Vector generalizations of the Kerr solitons
have also recently been derived [32]. A wide variety of exact analytical Helmholtz soliton
solutions are now known for a wide variety of polynomial-type and saturable nonlinearities
[33]. These new non-paraxial families include hyperbolic (exponential) and algebraic
solutions. Rigorous numerical simulations have verified that Helmholtz solitons are generally
stable robust attractors [29–35].

In this paper, we derive a new family of spatially extended solitons for a polynomial-
type NLH equation. These new ‘boundary solitons’ (or ‘edge solitons’) possess a double-
plateau structure in their amplitude, as opposed to their phase. This gives them a rare
characteristic amongst nonlinear optical waves since their intensity distributions share this
delocalized feature. A linear stability analysis is considered for nonlinear plane waves, while
full numerical simulations reveal remarkable stability characteristics for boundary solitons
that could not have been predicted a priori. This enhanced stability may allow such nonlinear
waves to be exploited in future optical device applications.

3. Helmholtz bright and boundary solitons

3.1. Model equation

We consider a continuous-wave transverse-electric (TE) scalar field Ẽ(x, z, t) with angular
frequency ω,

Ẽ(x, z, t) = E(x, z) exp(−iωt) + E∗(x, z) exp(+iωt), (1)

that is assumed to be polarized in the (x, z) plane of the waveguide. Since the complex spatial
envelopes are assumed to vary on a scale much larger than the optical wavelength (as they
must be for the scalar approximation to hold), the envelope E(x, z) is governed by an NLH
equation, (

∂2

∂z2
+

∂2

∂x2

)
E(x, z) +

ω2

c2
n2(|E|2)E(x, z) = 0. (2)

We consider a generalized polynomial-type scalar refractive-index distribution n = n0 + nNL,
where n0 is the linear index at frequency ω, nNL = nσ |E|σ − n2σ |E|2σ , nσ and n2σ are
(positive) nonlinear coefficients, and the exponent σ > 0. This model can describe weak
saturation effects in some planar waveguides [16, 17]. For nσ |E|σ � n0 and n2σ |E|2σ � n0

one finds that, to a good approximation, n2 � n2
0 + 2n0nσ |E|σ − 2n0n2σ |E|2σ and thus

equation (2) becomes(
∂2

∂z2
+

∂2

∂x2

)
E(x, z) +

ω2

c2

(
n2

0 + 2n0nσ |E|σ − 2n0n2σ |E|2σ
)
E(x, z) = 0. (3)
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With an appropriate rescaling, equation (3) may be expressed in the normalized form

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+

1

2

∂2u

∂ξ 2
+ α|u|σ u − γ |u|2σ u = 0. (4)

Here, ζ = z/LD , ξ = √
2x/w0 and LD = kw2

0

/
2 is the diffraction length of a

reference (paraxial) Gaussian beam of waist w0. The (inverse) beam-width parameter is
κ = 1/(kw0)

2 = (λ/w0)
2
/

4π2n2
0. The wave-field u is the normalized envelope of the

complex electric field, E(x, z) = E0u(x, z) exp(ikz), where k = n0k0, k0 = 2π/λ and λ is the
optical wavelength. By choosing a particular scaling such as E0 = (n0/nσ LDk)1/σ , one may
set α = 1 and then γ = Eσ

0 (n2σ /nσ ). However, we retain maximum flexibility in our model
by leaving the formal scaling unspecified and thereby derive exact analytical solutions to the
most general model (4). The paraxial model corresponding to equation (4) can be recovered if
and only if κ∂ζζ u is negligible with respect to other terms [16, 17]. The single small-parameter
limit κ → 0 is not, by itself, a sufficient condition for this recovery.

3.2. Conservation laws

Integrable models tend to possess a discrete infinity of conserved quantities [7, 8]. In contrast,
equation (4) is non-integrable so, at most, only a few integrals-of-motion can be defined
[33]. Three such invariants correspond to the energy-flow W, the momentum M and the
Hamiltonian H:

W =
∫ +∞

−∞
dξ

[
|u|2 − iκ

(
u∗ ∂u

∂ζ
− u

∂u∗

∂ζ

)]
, (5a)

M =
∫ +∞

−∞
dξ

[
i

2

(
u∗ ∂u

∂ξ
− u

∂u∗

∂ξ

)
− κ

(
∂u∗

∂ζ

∂u

∂ξ
+

∂u∗

∂ξ

∂u

∂ζ

)]
, (5b)

H =
∫ +∞

−∞
dξ

[
1

2

∂u∗

∂ξ

∂u

∂ξ
− κ

∂u∗

∂ζ

∂u

∂ζ
− α

|u|2+σ

1 + 1
2σ

+ γ
|u|2(1+σ)

1 + σ

]
. (5c)

If an initial condition for equation (4) does not correspond to an exact solution, beam evolution
typically involves the shedding of a small amount of radiation. Such radiation modes can be
regarded as a dissipation mechanism that permits a perturbed solitary excitation to lose energy
locally while total energy is conserved globally. That is, integrals (5) for the entire nonlinear
solution (which captures both solitary waves and radiative components) are still preserved.
A dissipative interpretation of the localized system behaviour is also instructive because it
allows the stability properties of various soliton families to be classified according to their
phase-space portraits.

3.3. Soliton solutions

Since equation (4) retains the full spatially symmetric (i.e. ‘2nd-order-in-z’) character, it
supports both forward- and backward-propagating solutions [31, 34, 35]. By convention,
we consider here only the forward solutions and note that the corresponding paraxial model
[16] has no counterpart to the backward solutions. An exact analytical bright soliton for
equation (4) has recently been derived [33],

u(ξ, ζ ) =
[

η

cosh[�(ξ, ζ )] + 

] 1
σ

exp

[
i

√
1 + 4κ(µ2/2σ 2)

1 + 2κV 2

(
−V ξ +

ζ

2κ

)]
exp

(
−i

ζ

2κ

)
,

(6a)
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where

�(ξ, ζ ) = µ
ξ + V ζ√
1 + 2κV 2

, (6b)

η =
(

µ2

2σ 2

)
2 + σ

α
, (6c)

 =
[

1 −
(

µ2

2σ 2

)
(2 + σ)2

1 + σ

γ

α2

]− 1
2

. (6d)

η and V are amplitude and transverse velocity parameters, respectively. µ is a free parameter
determining the soliton width, and the existence of the solution is guaranteed provided

µ < µCR = ασ

2 + σ

√
2(1 + σ)

γ
. (6e)

Here we report, for the first time, a boundary soliton solution of equation (4). An ansatz
approach was used to seek the on-axis solution. Then, by exploiting the invariance relations
of [34] of (4), an orthogonal transformation was deployed to derive the (more general) off-axis
solution,

u±(ξ, ζ ) =
[

η

exp[±�(ξ, ζ )] + 

] 1
σ

exp

[
i

√
1 + 4κ(µ2/2σ 2)

1 + 2κV 2

(
−V ξ +

ζ

2κ

)]
exp

(
−i

ζ

2κ

)
,

(7a)

�(ξ, ζ ) = µ
ξ + V ζ√
1 + 2κV 2

, (7b)

η = 2 + σ

α

(
µ2

2σ 2

)
, (7c)

µ = σα

2 + σ

√
2(1 + σ)

γ
. (7d)

The ± sign sets the parity of the solution and  > 0 is a free parameter. It is interesting
to note that relation (6e), defining µCR for the bright soliton, coincides with expression (7d),
which gives µ for the boundary soliton. The amplitude parameter η assumes the same
functional dependence in solutions (6) and (7), and these solutions also share a common
formal phase factor. The width of transition region between the two plateaux of a boundary
soliton, which is quantified by 1/µ, decreases as the index σ increases. This is expected
intuitively since for a stationary (propagation invariant) solitary wave an increase in the
nonlinearity must be accompanied by a corresponding increase in the strength of diffraction
(i.e. a narrowing of the boundary-soliton width). µ is determined uniquely by nominal
material parameters (i.e. α, γ and σ ). However, it should be noted that the ratio α/

√
γ , which

appears in equations (6e) and (7d), may depend on field amplitude E0, so that the specified
value of µ for boundary solitons can actually be attained through variation in light intensity.
Solution (3) has a ‘linked-plateau’ topology in both its amplitude and intensity distribution,
but there is no intrinsic phase shift across the wave profile. As such, boundary solitons play a
natural role as nonlinear waves that connect regions of finite- and zero-amplitude disturbance.
Such waves are known in other branches of physics [3]. They arise in universal models such
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as the Fisher-KPP and Burgers equations and are sometimes referred to as shocks, diffusive
solitons or power-balanced solitary waves.

The distinctive asymmetry of boundary solitons is manifest in the asymptotics of a solution
such as u−, where

lim
ξ+V ζ→−∞

|u−| → 0 and lim
ξ+V ζ→+∞

|u−| →
[

1 + σ

2 + σ

(
α

γ

)]1/σ

.

These limits are reversed for the opposite-parity solution u+. This amplitude topology
differs fundamentally from that of more familiar dark solitons [8, 30], where definite
parity in these latter solutions leads to an intensity distribution that comprises a localized
(symmetric) ‘grey dip’ on a uniform background. One may consider, for simplicity, on-
axis beams and define an inversion operation of ξ → −ξ (corresponding to reflection in
the propagation axis). Under this operation, bright- and black-soliton solutions behave as
u → u and u → −u, respectively. On the other hand, inversion of boundary solitons carries
solutions (7) into each other, that is u± → u∓ �= ∓u±. Each of the above results from
inversion transformation is consistent with the distinct topology of the solution concerned,
and each provides a snapshot of the full rotational consistencies that only arise from spatial
soliton representations in a Helmholtz framework. It is interesting to compare the phase
topologies of bright, boundary and dark solitons. Phase-topological dark solitons can be
expressed as u(ξ, ζ ) = u0D(ξ, ζ ) exp[i(kξ ξ + kζ ζ )], where D(ξ, ζ ) represents the localized
solitary dip that modulates a plane wave. If the factor D(ξ, ζ ) is omitted, the solution
u(ξ, ζ ) = u0 exp[i(kξ ξ + kζ ζ )] still satisfies the governing equation; indeed, it is a nonlinear
plane-wave solution. This kind of separation does not occur for bright and boundary solitons,
where the phase distribution is non-topological and spatial inhomogeneity connects to a zero
background.

Solutions (6) and (7) describe bright and boundary solitons, respectively, whose transverse
velocity V is related to the propagation angle θ = tan−1(

√
2κV ) with respect to the reference

(z) axis. When V = 0, the width of each solution is characterized by �0 = 1/µ, while
for a non-zero transverse velocity, one has that � = (1 + 2κV 2)1/2�0. An observer in the
(x, z) frame therefore ‘sees’ the width of the obliquely evolving beam, through a geometrical
projection [34], as increased by a factor of (1 + 2κV 2)1/2 = sec θ relative to its on-axis value
(see figure 1). The Helmholtz correction term 2κV 2 is determined solely by the propagation
angle θ and may be of arbitrary order. For example, one can have an off-axis regime where
2κV 2 	 O(1), even though κ � O(1) is satisfied since the Helmholtz beam is broad.

Thus, when the only source of non-paraxiality is due to oblique propagation, narrow-
beam models derived from single-parameter (i.e. κ-based) order-of-magnitude considerations
of Maxwell’s equations [23–26] are inappropriate. To emphasize the physical context of this,
consider a broad optical beam propagating in a uniform medium. One has freedom to choose
the orientation of the coordinate frame since there is no ‘preferred’ direction. One may align
the reference (z) axis along the propagation direction of the beam or define a coordinate
system where there is a finite angle between the beam’s propagation direction and the z axis.
When narrow-beam corrections are redundant in the first frame (because the beam is broad),
they are also redundant in the second frame. These two representations are, after all, of the
same beam. On the other hand, when the beam propagation angle becomes arbitrarily close
to 90◦ then the Helmholtz correction term 2κV 2 becomes arbitrarily large (by trigonometric
identity). Accurate descriptions of off-axis evolution [27, 28, 30–35] and oblique interactions
[29] need, instead, to respect x–z symmetry.

One can recover the bright and boundary solitons of the corresponding paraxial model
[16] from the (forward) Helmholtz solutions (6) and (7) by enforcing the simultaneous limits
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(a)

(b)

(c)

(d )

Figure 1. Angular beam broadening effect during off-axis propagation. (a) σ = 1 and (b) σ = 2
bright sech-type soliton solutions (6) for µ = 0.9µCR. (c) σ = 1 and (d) σ = 2 boundary-soliton
solutions (7) with  = 1. Solid line: θ = 0◦ (corresponding to the paraxial solution); dashed
line: θ = 30◦; dotted line: θ = 50◦; dot-dash line: θ = 60◦. For a non-paraxial parameter
κ = 10−3 (κ = 10−4), these propagation angles correspond to transverse velocities V = 0
(V = 0), V ≈ 12.91 (V ≈ 40.82), V ≈ 26.65 (V ≈ 84.27) and V ≈ 38.73 (V ≈ 122.47),
respectively. Material parameters: α = γ = 1.

κ → 0 (broad beams), κ(µ2/2σ 2) → 0 (moderate intensities) and κV 2 → 0 (axial, or
near-axial, propagation). We find that bright soliton (6) becomes

u(ξ, ζ ) �
[

η

cosh[µ(ξ + V ζ)] + 

] 1
σ

exp

[
−iV ξ +

i

2

(
µ2

σ 2
− V 2

)
ζ

]
, (8)

while boundary soliton (7) reduces to

u±(ξ, ζ ) �
[

η

exp[±µ(ξ + V ζ)] + 

] 1
σ

exp

[
−iV ξ +

i

2

(
µ2

σ 2
− V 2

)
ζ

]
. (9)

It is this triple limit that defines the paraxial approximation and these conditions are captured
by the single statement κ|∂ζζ u| → 0. We stress that the paraxial solutions (8) and (9) cannot be
obtained simply by setting κ = 0 in the corresponding Helmholtz solutions. For solution (9),
the particular case of σ = 2,  = 1 and V = 0 (on-axis propagation) was reported many years
ago by Gagnon for a cubic-quintic NLS-type equation [36]. The existence of such boundary-
soliton solution families could have been inferred from noting the mathematical similarities
between the (dispersive) cubic-quintic NLS model and the pinned front-bearing (diffusive)
Fisher-KPP equation. Although Gagnon’s paraxial boundary soliton appears to have received
little subsequent attention in the literature, its fascinating delocalized character has motivated
our Helmholtz generalization.
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4. Stability criteria for bright and dark solitons

For NLS-type equations with generalized nonlinearities [16], insight into the potential
instability of a localized bright solution can sometimes be gained through examination of the
well-known Vakhitov–Kolokolov integral criterion [37]. The absence of unstable eigenmodes
with real instability growth rate, for a solution u = |u(ξ, ζ ;�)| exp(i�ζ) that is constrained
by vanishing asymptotics (i.e. |u| → 0 and ∂ξu → 0 as ξ → ±∞), is indicated by

dP(�)

d�
> 0, (10a)

where

P(�) ≡
∫ +∞

−∞
dξ |u(ξ, ζ ;�)|2. (10b)

Here, P(�) is the beam power and � is the longitudinal wavenumber. Criterion (10) turns
out to be a solvability condition for a linearized eigenvalue problem [18, 38] and is usually
valid for examining stability against sufficiently small perturbations. Enns et al [39] showed
that (10) does not guarantee the stability of bright solitons against arbitrarily large perturbations
and that numerical analysis is essential to address the issues of about ‘robust’ soliton stability.

A linear-stability criterion for dark-type solitons in NLS-type systems has been established
in a mathematically rigorous manner only recently (see [6] and references therein). This
framework is based on a renormalized field momentum and is valid for solutions with dark
soliton-type non-vanishing asymptotics, where as ξ → ±∞, |u| → const and ∂ξu → 0.
The continuous infinity of degrees of freedom associated with the plane-wave background are
subtracted in a self-consistent way, so that dark solitons can be stable if

dMR(V0)

dV0
> 0, (11a)

where

MR(V0) ≡ i

2

∫ +∞

−∞
dξ

(
u

∂u∗

∂ξ
− u∗ ∂u

∂ξ

) (
1 − u2

0

|u|2
)

(11b)

is the renormalized momentum and V0 is the intrinsic velocity.
Boundary solitons (7) and (9) possess asymptotics that correspond to neither bright-

nor dark-soliton excitations. Firstly, the integral in equation (10b) is formally infinite for
solution (9). We note, in passing, that the integrals in conservation laws (5) are also divergent
for the Helmholtz boundary soliton (7). Secondly, the renormalization procedure for dark
solitons is not appropriate because there is no infinitely extended plane-wave background
field. Since neither integral criterion quoted above can be applied, the stability of boundary
solitons in nonlinear optics appears to have remained an unanswered question.

5. Stability of Helmholtz solitons

In this section, the stability of the boundary- and bright-soliton solutions of equation (4) is
examined through numerical perturbative techniques. Consideration of linear-stability analysis
of plane-wave backgrounds is presented in the appendix.

We have examined the stability of a range of Helmholtz solitons under perturbations to
their angular spectrum using well-tested numerical methods [29–31, 33, 34]. In the course of
these stability analyses, there have arisen four broad classes of behaviour in the parameters
(amplitude, width, and area = amplitude × width) of the reshaping beam: (i) monotonically
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decreasing oscillations that eventually vanish to leave a stationary state, (ii) rapid emergence
of a stationary state with no accompanying oscillatory features, (iii) sustained self-oscillations
that survive in the long-term evolution or (iv) diffractive spreading towards a zero-amplitude
state. Kerr bright beams [21] exhibit behaviour (i), while dark beams [22] evolve as described
in (ii). We have classified these solitons as weakly and strongly attracting fixed points of
the system, respectively, due to their distinct rates of convergence towards stationary states.
Perturbed power-law soliton beams tend to display the oscillatory behaviour described in
(iii). We have classified these solution families as stable limit cycles and have attributed
the oscillatory characteristic to the excitation of an internal mode [31]. Bright solitons of a
polynomial-type nonlinearity have been found to display the characteristics described as (i),
(iii) and (iv), depending upon system parameters [33].

5.1. Bright solitons

We first examine the stability of bright solution (6) under angular perturbations. Since
Helmholtz non-paraxiality requires κ � O(1) and κ(µ2/2σ 2) � O(1), the transverse phase
gradient of solution (6) is well approximated by

S = V

√
1 + 4κ(µ2/2σ 2)

1 + 2κV 2
� V√

1 + 2κV 2
= sin θ√

2κ
. (12)

An initial condition for equation (4) is then chosen to be the exact paraxial solution (8),

u(ξ, 0) =
[

η

cosh(µξ) + 

] 1
σ

exp(−iS0ξ). (13)

By applying a rotational transformation [34] to (13) and examining the beam in the θ direction,
it can be seen that the initial condition may be regarded, in this new coordinate system, as an on-
axis soliton whose width has been decreased by the Helmholtz factor sec θ = (1 + 2κV 2)1/2,
where V = S0

(
1 − 2κS2

0

)−1/2
. We present results for the nonlinearity powers σ = 1

(quadratic-cubic nonlinearity), 2 (cubic-quintic nonlinearity), 3 and 4, where the input beams
are launched at the non-paraxial angles θ = 15◦, 30◦ and 45◦. For κ = 10−3 (κ = 10−4),
these angles correspond to S0 ≈ 5.79 (S0 ≈ 18.30), S0 ≈ 11.18 (S0 ≈ 35.36) and S0 ≈ 15.81
(S0 = 50.0), respectively. The curves shown in figures 2 and 3 are universal in the sense
that they hold for any combination of κ and V so long as the product κV 2 = 1

2 tan2 θ is
preserved. The scalings of equation (4) are such that as κ becomes smaller (i.e. the beam
becomes broader) the length scale of the reshaping oscillations increases in the (x, z) frame
since z = ζ/2κk. Without loss of generality, the material parameters are set to α = γ = +1;
these coefficients can be eliminated through a rescaling of equation (4), and one thus expects
the same qualitative behaviour to arise for arbitrary choices of α and γ . This has been
confirmed by direct simulation.

We begin by considering initial condition (13) with µ = 0.9µCR. Figure 2(a) shows
that when σ = 1, sustained self-oscillations survive in the long-term evolution of the beam
parameters. The oscillation are contained within an envelope that varies quasi-periodically
in the propagation direction. For σ = 2 and σ = 3 (figures 2(b) and (c), respectively),
the parameters undergo monotonically decreasing oscillations that vanish as ζ → ∞. This
behaviour is reminiscent of Kerr bright solitons [34]. For σ = 4, weak and moderate
perturbations have been found to give rise to monotonically deceasing oscillations. However,
for strongly perturbed beams, self-focusing cannot balance diffractive spreading and the
initially localized state diffracts and disappears as ζ → ∞ (dot-dash curve in figure 2(d)).
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(a)

(b)

(c)

(d )

Figure 2. Evolution of the peak amplitude |u|m for initial condition (13) with µ = 0.9µCR for
(a) σ = 1, (b) σ = 2, (c) σ = 3 and (d) σ = 4. Solid line: θ = 15◦; dashed line: θ = 30◦;
dot-dash line: θ = 45◦.

(a)

(b)

(c)

(d )

Figure 3. Evolution of the boundary-soliton width for initial condition (14), with  = 1 and for
(a) σ = 1, (b) σ = 2, (c) σ = 3 and (d) σ = 4. Solid line: θ = 15◦; dashed line: θ = 30◦;
dot-dash line: θ = 45◦.

This type of conditional stability has been discovered for some power-law [31] and algebraic
[33] solitons. Extensive numerical simulations have revealed that the global characteristic
(i.e. sustained/decaying oscillations or diffractive spreading) of any reshaping beam appears
to be independent of µ.
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5.2. Boundary solitons

We now choose an initial condition for equation (4) in the form of an exact paraxial boundary
soliton (9),

u−(ξ, 0) =
[

η

exp(−µξ) + 1

] 1
σ

exp(−iS0ξ). (14)

Figure 3 demonstrates that the width of the boundary soliton undergoes monotonically
decaying oscillations, tending towards an asymptotic linked-plateau intensity distribution
that is stationary as ζ → ∞. For the cubic-quintic nonlinearity (σ = 2), the asymptotic
width is given precisely by �∞ ∼ µ−1(1 + 2κV 2)1/2. For other values of σ , we find that the
boundary width that emerges is slightly less than that predicted.

Numerical simulations have revealed three intriguing aspects of boundary-soliton stability.
Firstly, despite its asymmetric delocalized structure, perturbed boundary-soliton initial
conditions evolve towards their stationary states in a manner reminiscent of exponentially
localized Kerr solitons [34]. We suspect that this may be related to their phase distributions
being non-topological. Secondly, in all our simulations, a stationary boundary soliton was
found to emerge from the initial condition. Thirdly, this stationary state is reached much sooner
for boundary solitons than for localized sech-type solitons (one can compare the longitudinal
length scales in figures 2 and 3). These surprising results show that the new delocalized
solutions (9) are generally more robust than their localized (2) counterparts. In particular, we
have uncovered no evidence of the conditional stability found for σ = 4 bright solitons in the
corresponding boundary soliton (see figure 2(d)).

5.3. Discussion

Behaviour of dissipative nonlinear dynamical systems is often analysed within a phase-space
representation [18, 40, 41]. One can identify universal attractors (or trajectories) that appear in
a particular phase plane, such as fixed points or limit cycles. Fixed points represent stationary
states of the system. Trajectories that are attracted to such points may involve damped
oscillatory motions, such as those shown in figures 2(b) and (c). Those θ = 15◦ solutions
(solid lines) are represented in a phase space in figures 4(a) and (b). Numerical analysis reveals
that boundary solitons have qualitatively similar propagation properties (see figure 3). It is in
this sense that we classify boundary solitons, and some families (i.e. σ = 2 and σ = 3) of
bright solitons, as fixed-point attractors. Sometimes, periodic and quasi-periodic trajectories
arise in the evolution of beams, for example the σ = 1 solution shown in figure 2(a). In this
case, one finds closed-figure or nearly-closed-figure trajectories in the phase plane, as shown
in figure 3(c). These phase portraits resemble classic limit-cycle orbits in nonlinear dynamics
[41], and this is the basis for classifying σ = 1 solitons as limit-cycle attractors. Finally,
one sometimes encounters trajectories that converge monotonically towards a zero-amplitude
asymptotic state. This occurs with strongly perturbed σ = 4 bright solitons, as shown in
figure 2(d). In this case, the initial condition may be interpreted as lying outside the soliton
basin of attraction and inside that of a fixed point with zero amplitude. The σ = 4 bright
soliton families are, in this sense, conditionally stable solutions.

Figure 5 illustrates what types of trajectory arise from perturbed bright solitons in a
section of the (σ, θ) plane. Generally, one tends to find only limit-cycle behaviour in the
region 0 < σ � 1.5 and fixed-point behaviour in 1.5 < σ � 3. For σ > 3, the solitons tend
to show conditional stability: small and moderate perturbations (θ � 30◦) lead to fixed-point
behaviour, while larger perturbations (θ > 30◦) can lead to diffractive spreading.
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(a)

(b)

(c)

(d )

Figure 4. Phase portraits for the perturbed bright soliton (6) arising from initial condition (13).
Parts (a) and (b) correspond to the θ = 15◦ curves of figures 2(b) (σ = 2) and (c) (σ = 3),
respectively. The trajectories wind asymptotically on to points in the phase plane. These points lie
on the (∂/∂ζ )|u|m = 0 axis (indicating that a stationary state has been reached), and their position
on the |u|m axis depends upon the perturbation θ . The θ = 15◦ limit-cycle trajectory of figure 2(a)
(σ = 1) is represented here in part (c). The trajectory in (d) corresponds to the diffracting beam of
figure 2(d), where a (conditionally stable) σ = 4 soliton is strongly perturbed (θ = 45◦).

Figure 5. Schematic diagram illustrating the asymptotic behaviour of perturbed bright solitons
(initial condition (13)) in the (σ, θ) plane.

6. Conclusions

We have presented, for the first time, a novel family of boundary-soliton solutions of an
NLH equation with a competing polynomial-type nonlinearity. The most general off-axis
solution (3) was derived from an orthogonal transformation of the on-axis beam and exhibits
a range of non-trivial Helmholtz-type corrections to its paraxial counterpart (9). The latter
solution appears to have been reported only for the cubic-quintic class of nonlinearity [36],
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which our more general model includes as a subset. Extensive numerical simulations have
revealed that the stability characteristics of boundary solitons closely resemble those of
exponentially localized bright solitons (6), and we have thus classified them as stable fixed
points of the system. The fixed-point and limit-cycle classifications discussed in this paper
are useful because they describe qualitatively, in simple terms, how various solitary-wave
solutions tend to evolve when perturbed.

The new Helmholtz boundary solitons are of fundamental mathematical and physical
interest. They expand the range of known exact analytical solutions of fully second-order non-
integrable wave equations. We have shown that, despite their spatially extended structure,
boundary solitons are remarkably stable against perturbations. These robust structures connect
regions of finite- and zero-amplitude disturbance. This feature suggests that they also may
be termed ‘edge solitons’, since they can act as natural nonlinear boundary waves at the
outer limits of, e.g. optical, disturbance. Moreover, the full Helmholtz framework of their
definition permits the application of these exact analytical solutions with any orientation in the
waveguide plane. Finite-size effects tend to play a profound role in two-dimensional transverse
pattern formation and it seems quite plausible that our Helmholtz boundary solitons, or higher
dimensional counterparts, may also find application in this important subject area [42–44].

Appendix

This appendix is given in three parts. Firstly, we present general considerations of the stability
of nonlinear plane waves that propagate under the combined influence of two-dimensional
diffraction and nonlinear dispersion. Secondly, we detail the (long-wave) stability of plane
waves in dispersive media. Finally, we explore the consequences of the elliptic character of
Helmholtz nonlinear wave equations and show that any instability that appears to arise from
the additional roots of the stability analysis actually corresponds to non-physical short waves.

A.1. Plane-wave stability analysis

Here, stability analysis of plane-wave solutions of the generalized NLH equation,

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+

1

2

∂2u

∂ξ 2
+ f (I)u = 0, (A.1)

is considered, where I ≡ |u|2 and f (I) is an arbitrary but well-behaved function of the
intensity I satisfying f (0) = 0. Equation (A.1) has the obliquely propagating plane-wave
solution [45],

u(ξ, ζ ) =
√

I0 exp

[
ikξ ξ + i

√
1 + 4κ�k

(
k2
ξ , I0

) ζ

2κ

]
exp

(
−i

ζ

2κ

)
, (A.2a)

where

�k
(
k2
ξ , I0

) = f (I0) − 1
2k2

ξ , (A.2b)

that evolves in the forward direction. It is straightforward to show that the transverse
wavenumber kξ cannot be arbitrarily large. Instead, it has a maximum value |kξ |max given by

|kξ |max =
√

1 + 4κf (I0)

2κ
� 1√

2κ
, (A.2c)

where the approximation on the far right-hand side holds since in Helmholtz non-paraxiality
one has that κ � O(1) (broad beams), I0 � O(1) and κf (I0) � O(1) (moderate intensities).
Condition (A.2c) corresponds to the plane wave propagating in a direction perpendicular to
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the longitudinal (z) direction (i.e. along the x axis). Solution (A.2) reduces to its paraxial
counterpart

u(ξ, ζ ) �
√

I0 exp
[
ikξ ξ + i�k

(
k2
ξ , I0

)
ζ
]

(A.3)

in the limit κ → 0 and κ�k → 0. Paraxial theory assumes implicitly that kξ is sufficiently
small for the slowly varying envelope approximation to hold (i.e. waves travel close to or
along the z axis), and no formal physical limit, analogous to (A.2c), arises for solutions (A.3).
The stability of plane-wave solutions does not depend on their propagation direction, so for
simplicity we perturb the on-axis solution (A.2), obtained by setting kξ = 0, according to
[46, 47],

u(ξ, ζ ) = [
√

I0 + a(ξ, ζ )] exp

[
i
(−1 +

√
1 + 4κf (I0)

) ζ

2κ

]
, (A.4)

where a(ξ, ζ ) is a complex function. After substitution into equation (A.1), the nonlinear
function is expanded using a Taylor series. Linearizing around the plane-wave solution then
leads to the following equation governing evolution of the perturbation field:

κ
∂2a

∂ζ 2
+ i

√
1 + 4κf (I0)

∂a

∂ζ
+

1

2

∂2a

∂ξ 2
+ I0f

′(I0)(a + a∗) = 0. (A.5)

One can introduce a quite general ansatz

a(ξ, ζ ) = a1 exp[i(Kξξ + Kζζ )] + a2 exp[−i(Kξξ + K∗
ζ ζ )], (A.6)

that allows both forward- and backward-propagating waves and where, by convention, Kξ

is a real parameter. Modulational instability results whenever Kζ has a non-zero imaginary
part. Collecting coefficients of the exponential terms and seeking non-trivial solutions gives a
quartic polynomial in Kζ :

κ2K4
ζ − [

1 + 4κf (I0) + 2κI0f
′(I0) − κK2

ξ

]
K2

ζ + 1
2K2

ξ

[
1
2K2

ξ − 2I0f
′(I0)

] = 0. (A.7)

Setting K2
ζ ≡ s, equation (A.7) assumes a quadratic form

κ2s2 − b
(
K2

ξ , I0
)
s + c

(
K2

ξ , I0
) = 0, (A.8a)

where

b
(
K2

ξ , I0
) ≡ 1 + 4κf (I0) + 2κI0f

′(I0) − κK2
ξ , (A.8b)

and

c
(
K2

ξ , I0
) ≡ 1

2K2
ξ

[
1
2K2

ξ − 2I0f
′(I0)

]
. (A.8c)

A.2. Long-wave instability

It is well known [47] that plane waves propagating in polynomial-type nonlinear media may
be subject to the spontaneous growth of transverse modulations. This (long-wave) instability
has been studied in the context of paraxial models and was found to occur when f ′(I0) > 0
and for a narrow spectral region given by |Kξ | < 2[I0f

′(I0)]1/2. These conditions are dictated
by equation (A.8c) and a requirement of c(K2

ξ , I0) negative. The predicted gain [47] of

perturbations is given by
√

2|Kξ |
[
2I0f

′(I0) − 1
2K2

ξ

]1/2
. In this paper, f (I) = αIσ/2 − γ Iσ ,

and stability of the finite-amplitude plateau regions has been confirmed by fully nonlinear
numerical simulations.
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A.3. Short-wave instability

To examine the character of potential further instability regimes, arising from the quartic
character of equation (A.7), we set Kζ = KR + iKI and seek regimes where KI is non-zero.
Some algebra reveals that this can occur whenf ′(I0) < 0, and hence when c

(
K2

ξ , I0
)

is always
positive. In this case,

KI = Re

{
± 1

2κ

[
2κ

√
c
(
K2

ξ , I0
) − b

(
K2

ξ , I0
)]1/2

}
. (A.9)

One can define an associated modulation growth rate [46], g = 2|KI |, given by

g
(
K2

ξ , I0
) = 1

κ

∣∣∣∣∣Re

{[
2κ

√
c
(
K2

ξ , I0
) − b

(
K2

ξ , I0
)]1/2

}∣∣∣∣∣ , (A.10)

and the condition for instability becomes

1

2
K2

ξ

[
1

2
K2

ξ − 2I0f
′ (I0)

]
>

1

4κ2

[
1 + 4κf (I0) + 2κI0f

′(I0) − κK2
ξ

]2
. (A.11)

It is then straightforward to show that unstable wavenumbers are those satisfying

|Kξ | >

(
1√
2κ

)
1 + 4κf (I0) + 2κI0f

′(I0)

[1 + 4κf (I0)]1/2
. (A.12)

The expression on the right-hand side contains two factors: a geometrical term 1/
√

2κ and a
factor that depends weakly upon the system nonlinearity. In Helmholtz non-paraxiality, the
second factor is ∼O(1) and can be neglected. This gives the (short-wave) instability condition,

|Kξ |min � 1√
2κ

, (A.13)

that depends purely on linear propagation effects and is thus effectively independent of the
nonlinearity of the system. The geometrical character of this short-wave feature is uncovered
by examining the dispersion relation [35] of equation (A.1). Plane-wave solutions such as (A.2)
lie on an ellipse in (kξ , kζ )-space. The boundary between forward- and backward- propagating
waves occurs at kζ = kζcrit = −1/2κ , and at this boundary kξ = ±|kξ |max � ±1/

√
2κ

(the ± sign denotes propagation in the ±x directions, respectively). The potential short-
wave instability (A.12) is thus unphysical and corresponds to waves with transverse spatial
wavenumbers which are greater than those that can propagate. An interpretation of this
feature is that backward evanescent waves (those attenuated in the backward direction) could
be mistakenly interpreted as amplified forward waves (and similarly for evanescent forward
waves).
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Corrigendum

Helmholtz bright and boundary solitons
J M Christian, G S McDonald and P Chamorro-Posada 2007 J. Phys. A: Math. Theor. 40
1545–1560

Reference [15] should read

[15] Mihalache D, Bertolotti M and Sibilia C 1989 Progress in Optics XXVII ed E Wolf
(Amsterdam: Elsevier) pp 229–313.
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